
25th Annual Software Engineering Workshop
Goddard Space Flight Center, Maryland, 28-30 November 2000

Using Models to Test Process Assumptions

within the SEL Recommended

Software Development Approach1

1 This work is one of the results of the joint co-operation between the University of Roma “Tor Vergata”,
the Enterprise-University Consortium CERTIA, and the Software Engineering Laboratory of the University
of Maryland.

Paolo Donzelli and Giuseppe Iazeolla
Laboratory for Computer Science

and CERTIA Research Center
University of Rome "TorVergata"

Roma, Italy
donzelli,iazeolla@info.uniroma2.it

Keywords:
Software Process Improvement, Process Modeling, Hybrid Simulation

1. Introduction

Software Process Validation testing is the activity that tests the capability of a given software
process to satisfy user needs.

Validation of process assumptions is one form of validation testing. It consists of ensuring that
assumptions about the effects of introducing variants to the current paradigm of software
development are correct. For example, a project manager may want to be sure, before adopting
an extra review activity, that this will not carry any risk of schedule overrun; a testing manager
may want to verify to have enough staff available before committing himself towards higher
defect reduction performances; a process modeler may want to estimate the amount of process
overhead that could be generated by introducing higher concurrency levels among process
activities.

Software companies face the problem of validating process assumptions whenever they are
unsatisfied of current productivity or quality levels, and are willing to experiment new
development policies. Different assumptions on many process parameters can in fact strongly
affect the final process quality. Such parameters range from the structure adopted for the
particular process instantiation, according to the chosen paradigm (number and type of phases
and activities, nature of the exchanged artifacts, etc.), to the allocation of defect detection
resources (personnel, tools, and methods) throughout the lifecycle, to the priority policies
assumed for different tasks (defect correction, requirements change, etc.).

In many cases, however, such validation has to be done without affecting the actual
environment. To this purpose, we argue that the complexity of the software processes, their
dynamic behavior, and the need to quantitatively and qualitatively evaluate alternative
assumptions (or sets of assumptions) call the adoption of process models. The use of process
models is in fact an effective means to test and validate new assumptions on process parameters
[4,10].

To be effective, however, process models must combine the ability to sustain the complexity of

2

the modeling problem with the so-called dynamic estimation capability, that is the capability of
representing the dynamics of the simulated process. In other words, the ability of dealing with
the inter-twinned effects of various internal and external process parameters, of reconstructing
process trajectories over time under different what-if conditions, and of estimating process’s
outcomes in a perturbed environment [3, 5, 8].

In such a perspective, the thrust of this paper is twofold:

• Introduce an approach capable of leading to process models with the required dynamic
estimation capability, suitable to act as process testing environments to allow researchers,
process modelers, and project managers to view the implications of their assumptions;

• Describe a model of the software development process recommended by the Software
Engineering Laboratory (SEL), as an application of the proposed modeling approach.

2. The Modelling Approach

To address process modeling issues, the paper proposes the combination of three traditional
modeling methods (analytical, continuous and discrete-event) into a unique hybrid two-level
modeling approach [6]. At the higher abstraction level, the process is modeled by a discrete-
event queuing network, which represents the component activities (i.e. service stations), their
interactions, and the exchanged artifacts. At the lower abstraction level, instead, the analytical
and continuous methods are used, to describe the implementation details of the introduced
activities.

Indeed, the software process shows both discrete system aspects (start/end of an activity,
reception/release of an artifact by an activity) and continuous system ones (resources
consumption by an activity, percentage of developed product), and thus the proposed modeling
approach provides a way to hierarchically take into account such different aspects. Furthermore,
its practical application shows that it provides a powerful method to accurately model and
analyze software processes, helping in bridging the gap between modelers and process experts.
The software process, in fact, is described in terms of highly representative graphical models
(queuing networks), providing a better visibility of the modeled process, of its operational
environment and managerial policies, whereas the component activities are described in terms of
well known analytical and continuous models, easily and quickly updateable. We argue that the
produced models are highly flexible, being easily adaptable to the characteristics and the maturity
level of the production environment, and updateable to follow its evolution (as advocated by such
software process improvement methods as the Capability Maturity Model or the Quality
Improvement Paradigm [1]).

3. A Model of the SEL Recommended Software Development Approach

The proposed hybrid modeling approach is applied to model the software development process
recommended by SEL [11], focusing on process quality attributes such as effort, delivery time,
productivity, rework percentage, product defect density and some sub-attributes thereof (final
product size, process staffing profile, staffing profile over single activities, defects pattern, etc.).

According to SEL, the software process (illustrated in Figure 1) consists of a series of sequential
phases, and the software product is the conclusive artifact of a series of intermediate artifacts.
In particular, we defined the following main artifacts: requirements, specification, high-level
design, low-level design, code, system-tested code and acceptance-tested code.

Although phases are sequential, their respective activities can run concurrently, given the
simultaneous execution of work activities (that generate the artifacts mentioned above) and
rework activities (necessary to fix defects or introduce requirement modifications). Thus, we
introduced artifacts generated and dealt with by activities aiming at fixing defects, i.e. defects

3

reports and corrections reports (e.g. low-level design defects reports, code correction
reports, etc.), and artifacts generated by activities that introduce modifications due to
requirements instability, i.e. changes and increments (e.g. specification changes, high-level
design increments, etc.).

The resulting modeled process thus consists of partly sequential and partly concurrent activities:
some of which are development activities, i.e. Specification (SP), High Level Design (HLD),
Low Level Design (LLD), and Implementation (IMP), and some others are testing activities,
i.e. System Test (ST), and Acceptance Test (AT).

Figure 1 – the modelled software process

Applying our hybrid approach, the software process is translated into a two-level model,
consisting of a higher and a lower abstraction level.

At the higher abstraction level, a queuing model is produced that is a direct replica of the
software process, with service stations used to represent activities, and circulating customers
used to represent artifacts that move from one activity to another. In particular, each activity is
described by a set of service stations to represent the component sub-activities, e.g. development
of the main artifact, defect correction, review, etc.. Two different types of queueing networks
have been used to model the development activities (SP, HLD, LLD, IMP) and the testing
activities (ST, AT), respectively.

As example of the development activities, Figure 2 illustrates the queueing network used to
model the HLD activity. The main service stations of the HLD activity are the "work station",
the "external rework station", the "internal rework station" and the "review station". The “work
station” simulates the development of the high-level design artifact on the basis of the received
specification artifact. Depending on the received SP changes, and SP increments, the

requirements

requirements changes

requirements increments

Specification (SP)
Activity

High Level Design (HLD)

Activity

Low Level Design (LLD)
Activity

Implementation (IMP)
Activity

System Test (ST)
Activity

Acceptance Test
(AT) Activity

specification

SP changes

SP increments

SP corrections reports

high level design

HLD changes

HLD increments

HLD corrections reports

low level design

LLD changes

LLD increments

LLD corrections reports

code

code changes

code increments

code corrections reports

system-tested code

system-tested code changes

system-tested code increments

system-tested code corrections reports

high level design defects reports

low level design defects reports

code defects reports

specification defects reports

d

e

f
e

c

t

s

r

e

p
o

r

t
s

acceptance-tested code

acceptance-tested code changes

acceptance-tested code increments

(the final SW_product)

 SP HLD LLD IMP ST AT time

Process
Phases

4

“external rework station” simulates the modification of the already released high-level design,
and yields the corresponding output artifacts (HLD changes and HLD increments). Similarly, on
the basis of the received SP corrections reports and HLD defects reports, the “internal
rework station” simulates the correction of the released high-level design, and yields the
corresponding HLD corrections reports. Finally, the “review station” simulates the review
performed on the high-level design, on the HLD changes, and HLD increments. No review is
performed on the HLD correction reports, assumed with no defects. In other words, it is
assumed that no further defects (bad fixes) are injected during the correction activities
performed by the “internal rework station”.

Figure 2 - Higher abstraction level of the HLD activity (a development activity)

As example of the testing activities, Figure 3 illustrates the queueing network used to model the
AT activity. The main service stations are the "work testing station", and the "external rework
testing station". The “work testing station” simulates the acceptance testing of the system-tested
code, whereas the “external rework testing station” simulates the acceptance testing of the
system-tested code changes and increments. Again, the system-tested corrections reports are
assumed without defects.

In both the activities (figures 2 and 3), the “start”, the “release” and the “store” stations are
assumed to be zero service-time stations, performing co-ordination activities only. The “start
station” takes care of routing the input artifact to the appropriate service station, while the
“release station” and the “store station” take care of the release of the artifacts.

At the lower abstraction level, the behavior of each service station introduced at the higher level
is modeled by either an analytical average-type function, or by a continuous type time-varying
function, or by a combination thereof. Such functions, mainly derived by the SEL models [7, 12,
13, 14], are used to express the amount of resources, or time, or effort that various service
stations use to simulate the corresponding activities or sub-activities.

Figure 4 shows the implementation details of the HLD “work station”, the main of the service
stations depicted in Figure 2, and of its corresponding input and output artifacts.

The station simulates the development of the high-level design artifact, starting from the
specification artifact. The specification and high-level design artifacts are described by a set

store station

internal rework station

external rework station

HLD

HLD changes

HLD increments

(corrected, to be released)

HLD

HLD changes

HLD increments

(to be corrected)

HLD

HLD changes

HLD increments

HLD correction reports

start station

work station

review
station

release
 station

internal rework station

specification

SP changes

SP increments

SP corrections reports

SP defect reports

SP defects reports

5

of four attributes: name, size, development effort and defectiveness, as in the squared frames on
the top of Figure 4

Name and size are of immediate evidence. The defectiveness attribute is described by an array
whose j-th element is the amount of defects injected into the artifact by the j-th development
activity (j = SP, HLD, LLD, IMP). For example, for the case in Figure 4, the defectiveness of
the specification artifact is given by D1= [D1(SP),0,0,0]. The development effort attribute (W1
for the specification and W1+W for the high-level design) is the effort that has been spent to
develop the artifact itself since the beginning of the process. Thus, it encompasses also the effort
spent to develop all the artifacts from which it has been derived.

Figure 3 - Higher abstraction level of the AT activity (a testing activity)

The values of the attributes in the high-level design frame, together with the amount of time, T,
(or the “work station” service time), and the required personnel over time, E(t), are derived by
application of analytical average-type functions, and continuous type time-varying functions, as
illustrated by the blocks in Figure 4. Such quantities may have random deviations, and are
therefore simulated according to gaussian-like probability distributions.

More in detail, the average size of the high-level design artifact is first derived from the size of
the specification artifact by use of COCOMO [2]-like size estimators.

1 + 1_1__ c
b

sizeSPasizeHLDaverage =

The corresponding random high-level design size (HLD_size) is then obtained by use of the
gaussian-like pseudo-random generator. This value is then given to the COCOMO-like time
estimator block, to obtain the random release time (T), and to the COCOMO-like effort
estimator, to obtain the random total development effort (Wtot).

2
2_2 c

b
sizeHLDaT +=

3
3

_3 c
b

sizeHLDa
tot

W +=

On the basis of such T and Wtot, the effort density along time to produce the high-level design,
E(t), is finally obtained using the Rayleigh function [9].

E(t) = W
tot

t

T
2 e

t

T
−

2

2 2

store station

external rework
testing station

AT code

AT code changes

AT code increments

AT code correction reports

start station

work testing
station

release
station

ST code

ST code changes

ST code increments

ST code corrections reports

ST code defect reports

ST code defects reports

6

Unlimited staff availability is assumed. In other words, it is assumed that the staff pool in Figure
3 can always supply the personnel necessary to fit the E(t) curve demand for personnel.
However more realistic assumptions on finite staff pools can be easily adopted.

According to Putnam’s assumption [9], the high-level design artifact is released when E(t)
reaches its peak. This means that the effort (W) simulated by the “work station” is a fixed
fraction of Wtot, as shown by the shaded area in Figure 4.

This value (W) is then added to the development effort (W1) of the specification artifact to
obtain the corresponding high-level design development effort (W1+W).

Figure 4 - Lower abstraction level of the “work station” in the HLD activity

The amount of defects injected into the high-level design (injected defects, ID) is obtained
through the injected defect estimator block, by multiplying the random high- level design size
times the expected defect density (defects per unit of size, DD).

DDsizeHLDID ×= _

Defect density is a parameter used in DCM to summarise the effects of various factors
(personnel skill, team structure, supporting tools, programming language, product type, etc) on the
defectiveness of a given development activity. DCM, however, can easily accept more elaborate
defect injection models [7].

The derived ID is then summed to D1 (specification defectiveness) to obtain the high-level
design defectiveness.

Name = HLD
Size = HLD_size
Dev. Effort = W1+W
Defectiveness(i) = D1(i) + ID
(i = HLD)
Defectiveness(j) = D1(j)
(j = other activities)

work station

Name = SP
Size = SP_size
Dev. Effort = W1
Defectiveness = D1

specification artifact

Injected Defects
Estimator

COCOMO -Like
Time

 Estimator

COCOMO-Like
Effort

Estimator

Pseudo-random
Generator

SP_size

random

release time

(T)

random

Injected Defects

(ID)

Rayleigh

average

HLD

sizethis area is the

effort to develop HLD

W = 0,39 Wtot

random

total effort

(Wtot)

random HLD size

(HLD_size)

COCOMO -Like
Size

 Estimator

high-level design artifact

time

E
(t

)

T time

staff E(t), T

7

More details on the analytical derivations of the functions used to model this station (and all the
other stations in Figures 2 and 3) are in [4, 5, 6].

4. Applying the Model

The complexity of the resulting model has forced us to evaluate it by simulation.

The model has been applied to reproduce two possible software development scenarios. In the
first scenario a stable set of requirements is assumed, in particular a requirements artifact of
1500 Function Points is given in input to the process model. In the second scenario, a certain
amount of instability is assumed: requirements increments and requirements changes are
regularly fed into the process, to reproduce a continuous requirements increment and change
activity. Over the development time, the requirements growth from the initial amount of 1500FP
to an amount of 1500FP+20%, while the 15% of the initial requirements is changed.

Simulation results for the first scenario are summarized in Table 1, columns 2 and 3, and in
Figures 5 and 6.

Attribute Results Confidence (95%) SEL data
Final Size 116 KLOC +/- 20 KLOC 116 KLOC
Effort (W) 500 PW +/- 60 PW 600 PW

Delivery Time (T) 78 W +/- 3 W 63 W
Productivity

(P)
5.8

LOC/P-hour
+/- 1.8

LOC/P-hour
5,3

LOC/P-hour
Rework Percentage

(RWK)
17% +/- 3% /

Defect Density
(DFD)

0.9 defects/KLOC +/- 0.3 defects/KLOC /

Average Staff 6.5 P +/- 1 P 9.5 P

Table 1 – Simulation results in case of Stable Requirements

Results in Table 1 give the predicted final size of the product, the related effort, delivery time,
productivity, rework percentage, defects density, and staff, with the corresponding confidence
intervals. Figures 5 and 6 give the dynamics of the personnel during the development.

Figure 5 – Project Staffing Profile (stable requirements)

Verification of simulator validity is done by obtaining a good level of confidence in the
representativeness of the simulation model against real-life situations. This is done in two ways:
1) demonstrating the model capability of reproducing empirically-known facts (in particular of
reproducing the effects of requirements instability on process quality attributes), and 2)
performing a quantitative and qualitative comparison against SEL data, i.e. models and actual
projects.
To compare against SEL data, Table 1, in column 4, reports data obtained by using SEL

0

3

6

9

12

15

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

week

st
af

f

8

estimation models, which show closeness to simulation results in column 2 plus/minus the
confidence intervals in column 3. Closeness to SEL data is reinforced by Figures 5 and 6. The
average staff profile for the entire project, shown in Figure 2 with its interval of confidence
(95%), bears a strong resemblance with the trapezoidal shape expected for a SEL project. In
addition, also the staff profile for a single activity (Figure 6 details the staff profile for the
implementation activity) shows a close similarity with a Rayleigh curve (dotted line), as expected
for a SEL project.

Figure 6 – Implementation Activity Staff Profile (stable requirements)

The model capability of reproducing empirically-known facts is demonstrated by the use of the
simulator in case of unstable requirements, where the simulator confirms (see Figure 4) the
empirical expectation that due to requirements instability a substantial increase of effort (W) and
delivery time (T) is introduced, and provides a quantitative prediction of such an increment (38%
and 60%, respectively). It also confirms the expected decrease of the process productivity (P),
the increase of the rework percentage (RWK), and the deterioration of the final product quality
(DFD). In fact, the rework percentage has more than doubled (a 150% increase), the
productivity has clearly dropped (a 21% decrease), and the defect density of the final product
has increased (a 66% increase).

Figure 7 – Effects of requirements instability on the project staffing profile

The effects of requirements instability over the staffing profile illustrated in Figure 7 also gives
an interesting comparison with SEL real project behavior. The profiles are similar in the two
scenarios at the beginning of the project and diverge when the effects of the new and changed
requirements increase. This behavior is qualitatively very similar to the staff profile measured by
SEL for a project (Figure 8) with a final product size slightly larger than the simulated one (160
KLOC rather than 125 KLOC) and characterized by a high requirements instability

0

3

6

9

12

15

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

week

st
af

f

0

3

6

9

1 2

1 5

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

w e e k

st
a

ff

E
(t

)

stable

unstab le

9

Figure 8 – SEL staffing profile for a project with high requirements instability

5. Conclusions

In conclusions, simulation results demonstrate the capability of the described model of
reproducing empirically-known facts, and thus of being adopted as tool to test process
assumptions. In particular, it can provide both qualitative and quantitative suggestions about how
to tune the software process to improve its quality, i.e. to shorten delivery time, increase
productivity, and reduce effort, rework and defects density.

Plan for future work includes the application of the suggested modelling method to less
conventional process paradigms, such as the spiral paradigm and the concurrent engineering
paradigm.

6. References

[1] Basili, V.R., Caldiera, G., Rombach, H.D., “The Experience Factory”, Encyclopædia of Software
Engineering, Wiley&Sons Inc., 1994.

[2] Bohem B.W. Software Engineering Economics. Prentice-Hall, N.J., 1981.

[3] Calavaro, G.F., Basili V.R., Iazeolla G. "Simulation Modeling of Software Development Process",
Proceedings of the 7th European Simulation Symposium, Erlangen-Nuremberg, GE, October 1995.

[4] Donzelli, P. and G. Iazeolla, “A Dynamic Simulator of Software Processes to Test Process
Assumptions”, Journal of Systems and Software (to appear 1st quarter 2001).

[5] Donzelli, P. and G. Iazeolla, “A software Process Simulator for Software Product and Process
Improvement”, Proceedings of the Product Focused Software Process Improvement Conference
(Profes’99), Oulu, Finland, June 22-24, 1999.

[6] Donzelli, P. and G. Iazeolla, “Hybrid Simulation Modelling of the Software Process”, Software Process
Simulation Modeling Workshop (ProSim 2000), 12-14 July 2000, London, UK.

[7] Kan, S. H. Metrics and Models in Software Quality Engineering. Addison-Wesley Publishing
Company, MA, 1994.

[8] Martin, R.H., D. Raffo. "A model of the Software Development Process Using both Continuous and
Discrete Models", International Journal of Software Process Improvement and Practice (to appear).

[9] Putnam, L.H. and W. Meyer. Measures for Excellence: Reliable Software on Time within Budget.
Prentice-Hall, N.J., 1992.

[10] Rus, I., and J. Collefello, “Assessing the Impact of Defect Reduction Practices on Quality, Cost, and
Schedule”, Software Process Simulation Modeling Workshop (ProSim 2000), 12-14 July 2000,
London, UK.

10

[11] SEL-81-305, "Recommended Approach to Software Development", Revision 3. Software Engineering
Laboratory Series, NASA-GSFC, Greenbelt, MD, 1992.

[12] SEL-84-101, "Manager's Handbook for Software Development", Revision 1. Software Engineering
Laboratory Series, NASA-GSFC, Greenbelt, MD, 1990.

[13] SEL-94-002, "Software Measurement Guidebook", Software Engineering Laboratory Series, NASA-
GSFC, Greenbelt, MD, 1994.

[14] SEL-95-105, "Software Process Improvement Guidebook", revision 1, Software Engineering
Laboratory Series, NASA-GSFC, Greenbelt, MD, 1996.

Author Biographies

PAOLO DONZELLI is an Advisor with the Department of Informatics, Telecommunications
and Statistics of the Office of the Prime Minister, Italy. Formerly, he served as an engineering
officer with the Italian Air Force, and then he was with Cranfield University (UK), as senior
research fellow. Dr Donzelli received a doctoral Laurea degree from the University of Naples
“Federico II” (Italy), a MSc degree from the Cranfield University (UK), and a PhD degree from
the University of Rome “TorVergata” (Italy). His research interests include software process
improvement, requirements engineering and business process modeling.

GIUSEPPE IAZEOLLA is full professor of Computer Science, Software Engineering Chair,
Faculty of Engineering, University of Rome “TorVergata” (Italy). His research is in the areas of
software engineering and information system engineering, in relation to system performance and
dependability modeling and validation.

